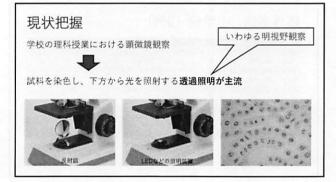
日本理科教育学会 第71回全国大会 (群馬大会)

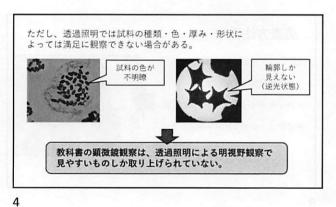
顕微鏡の暗視野観察を理科の授業へ

- 各分野で使える顕微鏡観察の提案 -

株式会社ナリカ 小島 大 岩手大学 名越 利幸 はじめに

新しい顕微鏡を開発するにあたり、**暗視野観察** という方法があることを知った。


暗視野観察ができる教育用顕微鏡は 各顕微鏡メーカーから提供されている。



顕微鏡観察において大変魅力的な観察方法と感じたため、**教育的にどのような有効性があるのか**を詳しく調査することにした。

1

2

3

照明の種類を変えることで解消される事もある

・試料の上方(斜方)から光を照射する「落射照明」

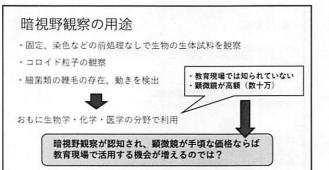
・試料に直接光を当てずに散乱光を利用し、 暗い視野の中で試料を光らせる「暗視野観察」

5

照明を変えることで、今までの明視野観察では 観察できなかった試料が鮮明に見られるようになる

1

観察物・観察方法 の多様化


6

暗視野観察とは

試料を照射した光が、
対物レンズに
直接入らないようにする

真っ暗な視野の中に、
「試料により散乱・回折を受けて対物レンズに入ってくる光」のみが当たるようになり、試料が光って見える。

*この方法は、1903年にググモンティ氏により発明されました(1925年/一ペル化子音受音)。

調査方法① 小学校・中学校・高

小学校・中学校・高等学校の教科書の中から、

顕微鏡を用いるおもな観察事例35点について

各試料を明視野と暗視野で撮影・記録した。

7

8

調査方法①

撮影には下記顕微鏡とカメラを使用。

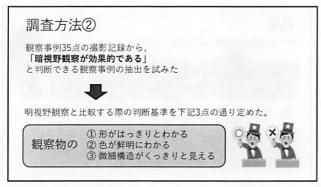
- · 生物顕微鏡NECROS II
- ・カシオ デジタルカメラEX-ZR200

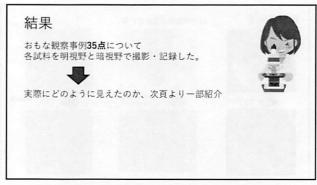
※撮影は、全てコリメート法による

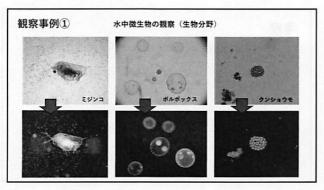
観察事例 小学校 (9例)

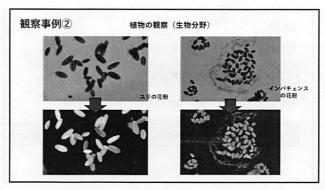
学年	単元名	おもな観察物
3年生	身近な自然の視察	チョウの領
5年生	植物の発芽・成長・結実	インゲンマメ、トウモロコシなどのデンプン
5年生	植物の発芽・成長・結実	アサガオやヘチマなどの花粉
5年生	動物の誕生	メダカの卵
5年生	物の溶け方	食塩、ミョウパンなどの結晶
6年生	植物の養分と水の通り道	ジャガイモなどのデンプン
6年生	植物の養分と水の通り道	ジャガイモ・ホウセンカ・ムラサキツユクサなどの気孔
6年生	生物と環境	水中微生物 (ミジンコ・ボルボックス・ゾウリムシ・クンショ ウモ・イカダモなど)
6年生	土地のつくりと変化	火山灰

9

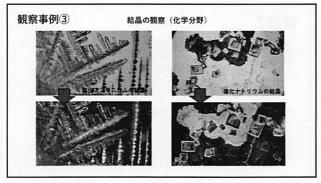

10

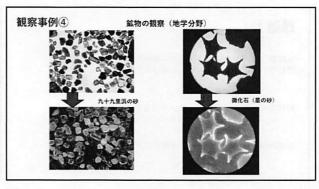

観察事例 中学校(11例)

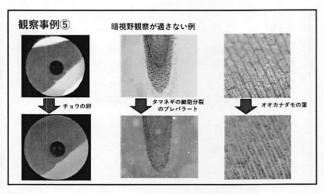

学年	単元名	おもな観察物
1年生	いろいろな生物とその共通点	スズメノカタビラ・ツユクサ・ユリ・タンポポ・ナズナ・アブラ ナなどの根・葉・茎
1年生	いろいろな生物とその共通点	イヌワラビ・ベニシダ・スギナ・ゼニゴケ・スギゴケなどの粒子
1年生	身の回りの物質	塩化ナトリウム、硝酸カリウム、硫酸鋼などの再結品
1年生	大地の歳り立ちと変化	火山灰、鉱物
2年生	生物の体のつくりと働き	タマネギ、オオカナダモ、レタス、トマトなどの細胞
2年生	生物の体のつくりと働き	パナナ、ソラマメ、サツマイモ、ジャガイモなどのデンブン
2年生	生物の体のつくりと働き	メダカ・ドジョウなどの血流
3年生	生命の連続性	タマネギやネギなどの細胞分裂
3年生	生命の連続性	ヒメダカ、ウニ、カエルなどの発生
3年生	自然と人間	ミジンコ・ボルボックス・ゾウリムシ・ミカブキモ・ミドリム シ・アメーバなどの水中微生物
年生	化学変化とイオン	金属のイオン化傾向、金属樹生成

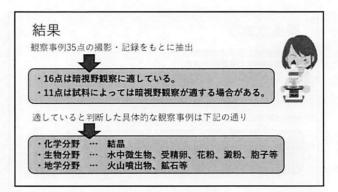

観察事例 高等学校(15例)

11

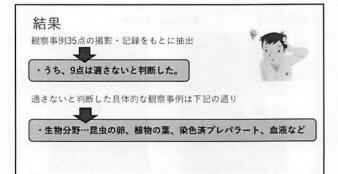








15 16



19 20

21 22

課題②

従来の明視野観察だけの場合と、明視野・暗視野両方の観察ができる場合とで、 具体的な教育的効果を教育現場で比較分析できていない。

今後の課題として、上述に関する客観的な調査が必要である。

継続して調査を行っていきたい。

まとめ

暗視野観察の活用が学校における顕微鏡観察の幅を広げ、

児童・生徒の知的好奇心をかき立てる一助となれるのでは

ないかと考えている。

謝辞

本発表にあたり、終始適切な助言を賜り、

また丁寧に指導して下さった

岩手大学 名越利幸先生に感謝の意を表します。

25

26

ご清聴ありがとうございました。

こちらのQRを読み取り、 ぜひ特設サイトも ご覧ください。

27